Vidyarthi Academy

Home NCERT Solutions Chapter Notes Test Papers Contact Us



Electric current

Ohm’s law


Factors affecting resistance of a conductor

Current density

Drift of electrons - origin of resistivity

Drift velocity

Mobility of electrons

Limitations of Ohm’s law

Colour coding of carbon resistors

Temperature dependence of resistivity of a metallic conductor

Temperature dependence of resistivity of an alloy

Temperature dependence of resistivity of semiconductors

Explanation of temperature dependence of resistivity

Electrical energy and power

Power dissipation in transmission lines

Combination of resistors in series

Combination of resistors in parallel

Electro motive force (emf) of a cell

Internal resistance of a cell

Relations of ε, V and r

Grouping of cells in series

Grouping of cells in parallel

Kirchhoff’s laws

Junction rule

Loop rule

Balanced Wheatstone bridge

Meter bridge


Potential gradient

Determination of emf of a cell using potentiometer

Determination of internal resistance of a cell using potentiometer



Electric current

The rate of flow of charge in any conductor is called electric current.

If Q is the net amount of charge flowing across the area in the forward direction in the time interval t, then,

Current, I = Qt

Instantaneous current

I= limΔt0ΔQΔt

I is defined to be the current across the area in the forward direction. (If it turns out to be a negative number, it implies a current in the backward direction.)

If a charge q revolves in a circle with frequency ν, the equivalent current, then i = qν

SI unit of current is Ampere (A).


This law states that the current passing through a conductor is directly proportional to the potential difference cross its ends, provided the physical conditions like temperature, remain unchanged.

Imagine a conductor through which a current I is flowing and let V be the potential difference between the ends of the conductor. Then,

Or I =VR

where the constant of proportionality R is called the resistance of the conductor.

The SI unit of resistance is ohm, and is denoted by the symbol Ω.


It is a property of a conductor by virtue of which it opposes the flow of current through it. It is equal to the ratio of the potential difference applied across its ends and the current flowing through it.

Resistance = Potential differenceCurrent


It is the S.I. unit of resistance. A conductor has a resistance of one ohm if a current of one ampere flows through it on applying a potential difference of one volt across its ends.

Factors affecting the resistance of a conductor

(A) At a given temperature, the resistance R of a conductor depends

i) Directly on its length l i.e.

R  l

ii) Inversely on its area of cross-section A i.e.

R 1A

iii) On the nature of material of the conductor on. On combining the above factors, we get

R lA

Therefore, we can write,

R = ρ ×lA

The proportionality constant ρ (Rho) is called resistivity of conductor.

(B) Temperature of the conductor.


It is defined as the resistance offered by a cube of a material of side 1 m when current flow perpendicular to its opposite faces. It is a characteristic property of the material. Its S.I. unit is ohm-meter (Ωm).

Resistivity, ρ = R AL

The metals and alloys have very low resistivity in the range of 10–8 Ωm to 10–6 Ωm. They are good conductors of electricity.

Insulators like rubber and glass have resistivity of above 1012 Ωm.

The substances with resistivity from 10-6 Ωm to 1012 Ωm are called semi-conductors.

Current density

Current per unit area (taken normal to the current), IA, is called current density and is denoted by j.

The SI units of the current density are A/m2. It is a vector quantity.

If E is the magnitude of uniform electric field in the conductor whose length is l, then the potential difference V across its ends is E l.

Or vectorially,


j=σ E,

where σ ≡ 1ρ is called the conductivity.

Drift of electrons - origin of resistivity

In absence of Electric field, electrons in a conductor will be moving due to thermal motion during which they collide with the fixed ions. An electron colliding with an ion emerges with the same speed as before the collision. However, the direction of its velocity after the collision is completely random.

Thus, if there are N electrons and the velocity of the ith electron (i = 1, 2, 3, ... N ) at a given time is vi, then


At a given time, there is no preferential direction for the velocities of the electrons. Thus on the average, the number of electrons travelling in any direction will be equal to the number of electrons travelling in the opposite direction. So, there will be no net electric current.

If an electric field is applied, the electrons will be accelerated due to this field by


Where –e is the charge and m is the mass of an electron.

Consider now the ith electron at a given time t. This electron would have had its last collision some time before t, and let ti be the time elapsed after its last collision.

If vi was its velocity immediately after the last collision, then its velocity Vi at time t is


The average of vi’ s is zero since immediately after any collision, the direction of the velocity of an electron is completely random.

The collisions of the electrons do not occur at regular intervals but at random times. Let τ be the average time between successive collisions. Then at a given time, some of the electrons would have spent time more than τ and some less than τ. That is, the time ti will be less than τ for some and more than τ for others as we go through the values of i = 1, 2 ..... N. The average value of ti then is τ (known as relaxation time).

Drift velocity

Under the influence of electric field, the electrons move with an average velocity which is independent of time, although electrons are accelerated. This velocity is called the drift velocity. It is represented by vd.

If vd is average velocity then,



=0- eEmτ 

=- eEmτ

Vidyarthi Academy

There will be net transport of charges across any area perpendicular to E. Consider a planar area A, located inside the conductor such that the normal to the area is parallel to E.

In an infinitesimal amount of time Δt, all electrons to the left of the area at distances upto |vd|Δt would have crossed the area.

If n is the number of free electrons per unit volume in the metal, then there are n Δt |vd|A such electrons.

The total charge transported across this area A to the right in time Δt is –ne A |vd| Δt.

The amount of charge crossing the area A in time Δt is by definition = I Δt, where I is the magnitude of the current.

Therefore, we can write,

IΔt = ne A vd Δt 

Now, putting the value of vd

IΔt=e2Am τ n Δt E

 I=ne2Am τ E


j=IA=ne2m τ E 

The vector j is parallel to A or E and hence we can write

j=IA=ne2m τ E 

Comparing with Ohm’s law (j = σ E), we get,

σ=ne2m τ

Mobility of electrons

The drift velocity of electron per unit electric field applied is called mobility of electrons. It is represented by μ.

Mobility of electron

μ =vdE= e τm

Putting the value,

vd=e E τm 

Wet get,

 μ =e E τmE= e τm

The SI unit of mobility is m2Vs-1. The practical unit of mobility is cm2Vs-1.

Mobility is always positive.

Limitations of Ohm’s law

The deviations broadly are one or more of the following types:

  1. V ceases to be proportional to I

    Vidyarthi Academy

  2. The relation between V and I depends on the sign of V. In other words, if I is the current for a certain V, then reversing the direction of V keeping its magnitude fixed, does not produce a current of the same magnitude as I in the opposite direction, example, diode.

Vidyarthi Academy

  1. The relation between V and I is not unique, i.e., there is more than one value of V for the same current I. Example GaAs.

Vidyarthi Academy

Temperature dependence of resistivity

Vidyarthi Academy

Vidyarthi Academy

Explanation of temperature dependence of resistivity

Resistivity of a material is given by


Colour coding of carbon resistors

The resistance of a carbon resistor can be calculated by the code given on it in the form of coloured strips.


Power of 10







































No Colour


Vidyarthi Academy

Yellow = 4 , Violet = 7, Brown = 1,

Gold = 5% (tolerance)

Hence R = (47 × 10 Ω) ± 5%.

Vidyarthi Academy

Red = 2, Silver = 10%

Hence R = (22 × 102 Ω) ± 10%.

Electrical energy and power

Consider a conductor with end points A and B, in which a current I is flowing from A to B. Since current is flowing from A to B, V(A) > V(B) and the potential difference across AB is V = V(A) – V(B) > 0.

In a time interval Δt, an amount of charge ΔQ = I Δt travels from A to B. The potential energy of the charge at A, was Q V(A) and at B, it is Q V(B). Thus, change in its potential energy ΔUp is

Since ΔUp < 0, therefore, ΔK > 0 for moving electrons under the influence of electric field.

This is called Ohmic loss.

Power P = WΔt


Power dissipation in transmission lines

Consider a device of resistance R, to which a power P is to be delivered via transmission cables having a resistance Rc.

The connecting wires from the power station to the device have a finite resistance Rc. The power dissipated in the connecting wires is Pc = I2Rc

Now, if V is the voltage across R and I the current through it, then

P = V I 

 I =PV        

 Pc =P2RcV2 

Or power dissipated is inversely proportional to V2. This is the reason the power is transmitted at high voltage.


Equivalent resistance

A single resistance which can replace the combination of resistances in such a manner that the current in the circuit remains unchanged, is called the equivalent resistance.

Resistances in series

Vidyarthi Academy

  1. Equivalent resistance, R = R1 + R2 + R3

  2. Current through each resistor is same. I = I1 = I2 = I3

  3. Sum of potential differences across individual resistors is equal to the potential difference, applied by the source. V = V1 + V2 + V3

Resistances in parallel

Vidyarthi Academy

  1. Equivalent resistance


  2. Potential difference across each resistor is same.

      V = V1 = V2 = V3

  3. Sum of electric currents flowing through individual resistors is equal to the electric current drawn from the source.

    I = I1+I2 + I3

Electro motive force (emf) of a cell

Emf ε is the potential difference between the positive and negative electrodes in an open circuit, i.e., when no current is flowing through the cell.

Its SI unit is volt.

Internal resistance of a cell

The obstruction offered by the electrolyte of a cell in the path of electric current is called internal resistance (r) of the cell.

Internal resistance of a cell

  1. Increases with increase in concentration of the electrolyte.

  2. Increases with increase in distance between the electrodes.

  3. Decreases with increase in area of electrodes dipped in electrolyte.

Relation between ε, V and r

Vidyarthi Academy

I =εR+r

r = εV 1R

If cell is in charging state, then

Grouping of cells in series

Vidyarthi Academy

If n cells, each of emf ε1, ε2, ε3 etc and internal resistance r1, r2, r3 etc. are connected in series to a resistance R. then equivalent emf

If ε1 = ε2 = ε3…. = εn then

Equivalent internal resistance

If r1 = r2 = r3…. = rn, then

Current in the circuit,

I=εeqR + req=nR + nr

Grouping of cells in parallel

Vidyarthi Academy

If V is the potential difference between A and C, we have,

I1 =(ε1  V)r1

I2 =(ε2 V)r2


I = I1 + I2

=ε1 r1+ε2 r2-V1r1+1r2

= ε1 r2+ε2 r1r1r2-Vr1+r2r1r2

I r1r2=ε1 r2+ε2 r1- V(r1+r2) 


V=ε1 r2+ε2 r1r1+r2- Ir1r2r1+r2


V = εeq  -I req

Comparing the two equations, we get,

εeq =ε1 r2+ε2 r1r1+r2


req= r1r2r1+r2=1r1+1r2

εeq req=ε1 r1+ε2 r2 

For n cells,

εeq req=ε1 r1+ε2 r2+ε3r3+ εn rn

1req=1r1+1r2+1r3+ 1rn


If the negative terminal of the second cell is connected to positive terminal of the first cell, the equations still hold would still be valid, by replacing


Kirchhoff’s laws

There are two Kirchhoff’s laws for solving complicated electrical circuits.

Junction rule

The algebraic sum of all currents meeting at a junction in a closed circuit is zero, i.e.,

This law follows law of conservation of charge.

Loop rule

The algebraic sum of all the potential differences in any closed circuit is zero, i.e.,

This law follows law of conservation of energy.

Point to be noted for loop rule

Vidyarthi Academy

For example, in the circuit in given above,

At junction ‘a’ the current leaving is I1 + I2 and current entering is I3. Therefore as per the junction rule,

For the loop ‘ahdcba’ the loop rule gives,

For the loop ‘ahdefga’ the loop rule gives,

Balanced Wheatstone bridge

Vidyarthi Academy

Wheatstone bridge is an arrangement of four resistances in which one resistance is unknown and the rest are known.

The bridge is said to be balanced when deflection in galvanometer is zero, i.e., Ig = 0.

Principle of Wheatstone bridge


If we know the value of P, Q and R, the value of unknown resistance S can be found. The bridge is most sensitive, when all the four resistances are of the same order.

Meter bridge

This is the simplest form of Wheatstone bridge and is especially useful for comparing resistance more accurately.

Vidyarthi Academy

RS=l1100 l1

where l1 is the length of wire from one end where null point is obtained.


Potentiometer is an ideal device to measure the potential difference between two points. It consists of a long resistance wire AB of uniform cross section in which a steady direct current is set up by means of a standard battery εo.

Vidyarthi Academy

The current I through the wire can be varied by a variable resistance (rheostat, Rh) in the circuit.

Potential gradient

Potential drop per unit length along the potentiometer wire is called the potential gradient. It is represented by ϕ.

Taking standard symbols,

Then the potential across the wire will be,


V =εoRo + R + r×R


 =VL=εoRo + R+rRL

Determination of emf of a cell using potentiometer

Vidyarthi Academy

If with a cell of emf ε1, on sliding the contact point we obtain zero deflection in galvanometer G, when contact point is at J at a length l1 from the end where positive terminal of cell have been joined, then fall in potential along length l1, is just balancing the emf of cell. Thus, we have,

ε1 =  l 1     

Similarly if the balance point comes at l2, when a cell of emf ε2 is connected, we have,

ε2 =  l 2     

Therefore, we can write,


If one of the cells is a standard cell, we can find the emf of other cell.

Determination of internal resistance of a cell using potentiometer

For this, the cell (emf ε) whose internal resistance (r) is to be determined is connected across a resistance box through a key k2, as shown in the figure.

Vidyarthi Academy

If the cell E is in open circuit (k2 open) and balancing length l1, then

ε = ϕ l1

When key k2 is closed the balance is obtained at l2,

Vidyarthi Academy


V = ϕ l2,

Combining both the equations, we get,


But, ε = I (r + R) and V = IR.


 r+RR= l1l2    

 r = Rl1l2 -1 

The potentiometer has the advantage that it draws no current from the voltage source being measured and it is unaffected by the internal resistance of the source.