Vidyarthi Academy

Home NCERT Solutions Chapter Notes Test Papers Contact Us



Types of substances on the basis of conductivity

Metals on the basis of conductivity

Semiconductors on the basis of conductivity

Insulators on the basis of conductivity

Energy bands in solids

Valence band

Conduction band

Forbidden band

Types of substances on the basis of energy bands

Metals on the basis of energy bands

Insulators on the basis of energy bands

Semiconductors on the basis of energy bands

Types of semiconductors

Elemental semiconductors

Compound semiconductors

Types of semiconductors based on purity

Intrinsic semiconductors

Effect of temperature on conductivity of semiconductors

Extrinsic semiconductor

n-type semiconductor

p-type semiconductor

Conductivity of extrinsic semiconductor

p-n junction

Diffusion of charge

Diffusion current

Depletion region

Drift of charge carriers

Drift current

Potential barrier across p-n junction

Semiconductor diode

Forward bias of p-n junction

Reverse bias of p-n junction

V-I characteristics of a diode

Threshold voltage or cut-in voltage

Dynamic resistance of diode

Application of junction diode as a rectifier

Half wave rectifier

Full-wave rectifier

Centre-tap transformer

Electric filter

Role of capacitor in the filter

Some special type of diodes

Zener diode

Zener diode as voltage regulator


Light emitting diodes (LED)

Photovoltaic devices (Solar cells)

Junction transistor

n-p-n transistor

p-n-p transistor

Transistor emitter

Transistor base

Transistor collector

Transistor in saturation region

Transistor in cut-off region

Transistor in active region

Basic transistor circuit configurations and transistor characteristics

Transistor in common base configuration

Transistor in common emitter configuration

Common emitter transistor characteristics

Input resistance of transistor

Output resistance of transistor

Current amplification factor

Transistor as a device

Transistor as a switch - base-biased CE configuration

Transistor as an amplifier

Amplification of dc voltage

Amplification of ac signal

Feedback amplifier

Transistor oscillator

Working of feedback amplifier

Tank circuit

Digital electronics

Analog signal

Digital signal

Logic gates

NOT gate

OR gate

AND gate

NAND gate

NOR gate

Integrated circuits

Linear or analogue ICs

Digital ICs



Integrated circuits

The conventional method of making circuits is to choose components like diodes, transistor, R, L, C etc., and connect them by soldering wires in the desired manner. Despite the miniaturisation introduced by the discovery of transistors, such circuits were still bulky. Apart from this, such circuits were less reliable and less shock proof.

An entire circuit; consisting of many passive components like R and C and active devices like diode and transistor; on a small single block (or chip) of a semiconductor is known as Integrated Circuit (IC). The chip dimensions are very small, as small as 1nm × 1nm.

Depending on nature of input signals, IC’s can be grouped in two categories:

  1. Linear or analogue IC’s: The linear IC’s process analogue signals which change smoothly and continuously over a range of values between a maximum and a minimum. The output is more or less directly proportional to the input, i.e., it varies linearly with the input. One of the most useful linear IC’s is the operational amplifier.

  2. Digital IC’s: The digital IC’s process signals that have only two values. They contain logic gates. Depending upon the level of integration (i.e., the number of circuit components or logic gates), the ICs are termed as Small Scale Integration, SSI (logic gates < 10); Medium Scale Integration, MSI (logic gates < 100); Large Scale Integration, LSI (logic gates < 1000); and Very Large Scale Integration, VLSI (logic gates > 1000).