Vidyarthi Academy

Home NCERT Solutions Chapter Notes Test Papers Contact Us

CBSE NOTES CLASS 12 PHYSICS

CHAPTER 14 SEMICONDUCTORS

Types of substances on the basis of conductivity

Metals on the basis of conductivity

Semiconductors on the basis of conductivity

Insulators on the basis of conductivity

Energy bands in solids

Valence band

Conduction band

Forbidden band

Types of substances on the basis of energy bands

Metals on the basis of energy bands

Insulators on the basis of energy bands

Semiconductors on the basis of energy bands

Types of semiconductors

Elemental semiconductors

Compound semiconductors

Types of semiconductors based on purity

Intrinsic semiconductors

Effect of temperature on conductivity of semiconductors

Extrinsic semiconductor

n-type semiconductor

p-type semiconductor

Conductivity of extrinsic semiconductor

p-n junction

Diffusion of charge

Diffusion current

Depletion region

Drift of charge carriers

Drift current

Potential barrier across p-n junction

Semiconductor diode

Forward bias of p-n junction

Reverse bias of p-n junction

V-I characteristics of a diode

Threshold voltage or cut-in voltage

Dynamic resistance of diode

Application of junction diode as a rectifier

Half wave rectifier

Full-wave rectifier

Centre-tap transformer

Electric filter

Role of capacitor in the filter

Some special type of diodes

Zener diode

Zener diode as voltage regulator

Photodiode

Light emitting diodes (LED)

Photovoltaic devices (Solar cells)

Junction transistor

n-p-n transistor

p-n-p transistor

Transistor emitter

Transistor base

Transistor collector

Transistor in saturation region

Transistor in cut-off region

Transistor in active region

Basic transistor circuit configurations and transistor characteristics

Transistor in common base configuration

Transistor in common emitter configuration

Common emitter transistor characteristics

Input resistance of transistor

Output resistance of transistor

Current amplification factor

Transistor as a device

Transistor as a switch - base-biased CE configuration

Transistor as an amplifier

Amplification of dc voltage

Amplification of ac signal

Feedback amplifier

Transistor oscillator

Working of feedback amplifier

Tank circuit

Digital electronics

Analog signal

Digital signal

Logic gates

NOT gate

OR gate

AND gate

NAND gate

NOR gate

Integrated circuits

Linear or analogue ICs

Digital ICs

CBSE NOTES CLASS 12 PHYSICS

CHAPTER 14 SEMICONDUCTORS

Energy bands in solids

The collection of closely spaced energy levels is called an energy band. In a crystal due to inter-atomic interaction valence electrons of one atom are shared by more than one atom in the crystal and splitting of energy levels takes place.

  1. Valence band: This energy band contains valence electrons. This band may be partially or completely filled with electrons but never be empty. The electrons in this band are not capable of gaining energy from external electric field to take part in conduction of current.

  2. Conduction band: This band contains conduction electrons. This band is either empty or partially filled with electrons. Electrons present in this band take part in the conduction of current.

  3. Forbidden band: This band is completely empty. The minimum energy required to shift an electron from valence band to conduction band is called band gap (Eg).

TYPES OF SUBSTANCES ON THE BASIS OF ENERGY BANDS

Metals on the basis of energy bands

A substance is a metal either when the conduction band is partially filled and the balanced band is partially empty or when the conduction and valance bands overlap. When there is overlap electrons from valence band can easily move into the conduction band.

This situation makes a large number of electrons available for electrical conduction. When the valence band is partially empty, electrons from its lower level can move to higher level making conduction possible. Therefore, the resistance of such materials is low or the conductivity is high.

???

Semiconductors on the basis of energy bands

In this case a finite but small band gap (Eg < 3 eV) exists. Because of the small band gap, at room temperature some electrons from valence band can acquire enough energy to cross the energy gap and enter the conduction band. These electrons (though small in numbers) can move in the conduction band. Hence, the resistance of semiconductors is not as high as that of the insulators.

???

Insulators on the basis of energy bands

In this case, a large band gap Eg exists (Eg > 3 eV). There are no electrons in the conduction band, and therefore no electrical conduction is possible. Note that the energy gap is so large that electrons cannot be excited from the valence band to the conduction band by thermal excitation. This is the case of insulators.

???

Previous
Next